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Abstract 

We show that any four-dimensional hyper-Hermitian manifold admitting a non-trivial tri- 
holomorphic Killing vector field is locally determined by the solution of a monopole-like equation 
on a three-dimensional Einstein-Weyl space of a special type. Conversely, any four-dimensional 
hyper-Hermitian manifold admitting a non-trivial tri-holomorphic Killing vector field arises in this 
way. 0 1998 Elsevier Science B.V. 

Subj. Class.: Differential geometry 
1991 MSC: 53B35,53C55 
Keywords: Hyper-Hermitian manifolds; Killing vectors; Monopoles; Einstein-Weyl spaces 

1. Introduction 

In this article our aim is to study four-dimensional hyper-Hermitian spaces which admit 
a (complete) Killing vector fieId preserving all the complex structures, a tri-holomorphic 
Killing vectorjield. Hyper-Hermitian spaces have attracted interest in the physics literature 
as the target spaces for o-models with (4,0)-supersymmetry, cf. [7] and references therein. 
We find that, given a tri-holomorphic Killing vector field X, such a space is determined 
locally by the solution of a monopole-like equation on a three-dimensional Einstein-Weyl 
space of a special type, this Einstein-Weyl space being identified with the “manifold” of 
orbits of X with the induced metric in the standard way [ 1 I]. Furthermore, every four- 
dimensional hyper-Hermitian space with tri-holomorphic Killing vector field arises in this 
way. These special Einstein-Weyl spaces form an interesting class in their own right. We 
show that the only compact example, besides the Riemannian or the flat case, is the Berger 
sphere regarded as an Einstein-Weyl space [ 111. 
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In Section 2, we review the theory of hypercomplex and hyper-Hermitian spaces and 
show how, in four dimensions, the existence of a tri-holomorphic Killing vector field leads 
to a particular geometry on the “manifold of orbits”. In Section 3, we interpret this geometry 
as an Einstein-Weyl connection subject to an extra condition on the curvature. Conversely, 
we show that given this condition on the curvature the construction can be reversed, leading 
to a four-dimensional hyper-Hermitian space. 

Four-dimensional hyper-Hermitian spaces admitting a tri-holomorphic Killing vector 
field have been considered in the physics literature [7,14] but the results obtained in the 
present work are more complete. 

2. Hyper-Hermitian 4-manifolds with symmetry 

2.1. Almost-hyper-Hermitian structures in dimension 4 

A triple (It, 12, 13) of almost-complex structures such that 

11 0 12 = -12 0 11 = 13, (1) 

on some (C”, real) manifold M, is called an almost-hypercomplex structure. If, moreover, 
the Zi’s are orthogonal with respect to some Riemannian metric g, we obtain an almost- 
hyper-Hermitian structure. An almost-hypercomplex, resp. almost-hyper-Hermitian, 
structure is called hypercomplex, resp. hyper-Hermitian, if all Zi ‘s are integrable. A hyper- 
Hermitian structure is called hyper-KiihEer if all Zi’s are parallel with respect to the Levi- 
Civita connection P of g. 

If M is four-dimensional, an almost-hypercomplex structure (Zl, 12, 13) determines an 
orientation and a conformal class [g] of Riemannian metrics by decreeing that 
(X, It X, ZzX, 13X} is a direct, conformally orthonormal frame of the tangent bundle TM 
for any non-vanishing vector field X. Conversely, any Riemannian metric with respect to 
which (II, 12, Z3) is almost-hyper-Hermitian belongs to this conformal class. 

We denote by AfM the (rank 3, real) vector bundle of self-dual, skew-symmetric endo- 
morphisms of TM, endowed with the induced inner product: (A, B) = -$trace(A o B). 
Then, two sections A and B of AfM are orthogonal if and only if they anticommute, and 
A o A = -1 if and only if its square-norm is equal to 2 (we thus obtain a natural identi- 
fication of the set of all positive, [g]-orthogonal almost-complex structures on M with the 
set of sections of the sphere bundle Sd(A+M), the so-called twistor space of (M, [g])). 
Accordingly, an orthogonal frame (Al, AZ, A3) will be called orthonormal if the square- 
norms of the Ai’s are all equal to 2. It will be called direct if, moreover, A3 = A1 o AZ. 
Then, an almost-hyper-Hermitian structure with respect to g is nothing else than a (global) 
trivialization of A+M by a direct, orthonormal frame. It follows that any four-dimensional, 
oriented, Riemannian manifold locally admits an almost-hyper-Hermitian structure. 

We recall the following well-known fact: 
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Proposition 1. Let (M, g) be an oriented, four-dimensional Riemannian manifold. Then, 
A f M can be locally trivialized by integrable almost-complex structures (II, I2, 13) if and 
only if the positive Weyl tensor W+ vanishes identically , i.e. g is anti-self-dual. 

Proof The part ifis a direct consequence of the integrability theorem of Atiyah-Hitchin- 
Singer for the canonical almost-complex structure on the twistor space S&(A+M) [2]. The 
part only if is a direct consequence of the following more precise fact: at each point x of 
M where W+ is non-zero, there exist two distinguished pairs f Jt , fJ2 of elements of the 
fibre AZ M ( reduced to one pair if Wf is degenerate at X) with the following property: For 
any integrable, positive, orthogonal almost-complex structure J in the neighbourhood of 
x, the value at x of J coincides with one of the elements f JI , f J2 [ 171 or [l] (in spinorial 
notations, the four elements f Jl , f J2 correspond to the four roots of Wf viewed as a 
section of Ct M). 0 

Note. Recall that A+M can be locally trivialized by DR-parallel sections if and only if 
Wf and the Ricci tensor Ric of g both vanish identically [lo]. 

From now on, (M, g) will denote an oriented, four-dimensional Riemannian manifold, 
equipped with an almost-hyper-Hermitian structure (II, 12, Z3), viewed as a direct, orthonor- 
ma1 (global) frame of A+ M. 

We denote by (at, s22, Q3] the corresponding Kahler forms, i.e. the (self-dual) real 
2-forms defined by L?i(., .) = g(Zi’, .), i = 1, 2, 3. 

For each Zi we consider the real 1 -form Bi , called the Lee form of the almost-Hermitian 
structure (g, Ii), defined by 

0, = Ii 6L?i, (2) 

or, equivalently 

dSZi =8i AL’i. (3) 

Note. The action of Zi on the cotangent space T* M is defined by (Zi a)(.) = -a(Zi .) 
for any covector CX, so as to be compatible with the Riemannian duality between TM and 
T*M. 

We shall use the following integrability criterion for almost-complex structures in 
dimension 4. 

Proposition 2. 
(a) I1 is integrable ifand only if& = 03, and similarly for 12 and Is. 
(b) {II, 12, I3) is hypercomplex tfand only if01 = 02 = 03. 

Proof The part (b) is an obvious consequence of (a). In order to prove (a) and for later use, 
we introduce the real I -forms (at, (112, CY~} determined by 
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DgI, = &crg @ 12 - ;12cq @ 13, 

Dg12 = ;I~cI,@I~~-;I~cY~@I,, (4) 

DK13 = 412~x2 8 II - iI1 (~1 @I 12, 

By considering the trace of the right-hand sides of (4), it is easily checked that the l-forms 
~1, (112, (113 are related to the Lee forms 01,02, 83 by 

81 = 9cr2 + a3), cdl = -81 + 82 + e3, 

02 = ita3 +al), a2 = +@I -62+03, (5) 

03 = :(a, +a2), a3 = +01 + e2 - 83. 

On the other hand, it is well known that, for each g-orthogonal almost-complex structure 
I, I is integrable if and only if the covariant derivative Dg I satisfies the following identity: 

D;I + I o D;,I = 0 (6) 

for any vector field X. By (4) and (5), we get 

DRIl + 11 0 D;, .[I = 13 (03 - 02) 8 12 + 12 (03 - 02) @ 13. (7) 

It follows readily that II is integrable if and only if 02 = 03 and similarly for I2 and 

13. 0 

Note. The only ifpart of (a) is more or less obvious since I3 = I1 o 12. The less obvious if 
part of (a) has been brought to the attention of the first author by F. Battaglia and S. Salamon. 

In view of Proposition 2, the common Lee form of (g, II), (g, 12) and (g, 13) when 
II, 12, I3 are integrable will be called the Leeform of the hyper-Hermitian structure, denoted 
by 0. 

The Lee form f3 of a four-dimensional hyper-Hermitian structure satisfies (de)+ = 0, 
i.e. the exterior differential do is anti-self-dual. This is because W+ s 0 by Proposition 1 
[4]. In particular, if A4 is compact, de = 0, i.e. any four-dimensional hyper-Hermitian 
structure is locally conformally hyper-Ktihler, cf. [5] for a classification. 

In the present paper, we focus on the opposite case, when M is not compact and hyper- 
Hermitian structures are not locally conformally hyper-KHhler. 

2.2. Distinguished hyper-Hermitian connections 

It is well known that an almost-hypercomplex structure (II, I2, 13) is hypercomplex if 
and only if there exists a torsion-free linear connection preserving each Ii ; then, such a 
connection is unique [3,13,17]. This holds in any dimension. Observe that the if part of the 
above assertion is obvious. 

In dimension 4, the Obata connection Dab can be expressed as follows. Choose any 
Riemannian metric g in the conformal class determined by (II, 12, 13) and, assuming 
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II, Z2, 13 are integrable, denote by 6’ their common Lee form with respect to g as above. 
Then, via (4) it is easily checked that the linear connection Dab defined by 

DgbY = D;Y - @(X)Y - @(Y)X + ;g(X, Y)@ (8) 

is independent of the choice of g in the conformal class and preserves each Zi, whence is 
equal to the Obata connection. 

Moreover, Dab also preserves the conformal class [g], as the latter is determined by the 
triple {It, 12, Z3), whence is a Weyl connection with respect to [g]. 

Further, as shown in [ 151, Dab is in fact Einstein-Weyl. 
Assuming that the Zi’s are integrable and starting from the above defined Obata connec- 

tion, it is an easy matter to construct hyper-Hermitian connections on TM with “small” 
torsion in some sense. As a matter of fact, we distinguish n~o “canonical” hyper-Hermitian 
connections, denoted by Do and D' 

The connection Do is defined by 

Do = Dab + ;O 18 I~,,,, 

where 1 TM denotes the identity of TM. Equivalently, 

D;=D;-6/,X, (10) 

for any vector field X, where 0 A X stands for the (skew-symmetric) endomorphism of TM 
defined by (6’ A X)(Y) = Q(Y)X - g(X, Y)@. Then, Do clearly preserves g and the 4’s, 
by (10) and (9) respectively. Moreover, its torsion T Do is “identified’ with the 1 -form 0 as 
follows 

T;; = ;@(X)Y - O(Y)X). (11) 

The connection D’ is defined by 

D’=Dg+*e, (12) 

where * denotes the Hodge-star operator on M, i.e. 

g(D;Y, Z) = g(D;Y, Z) - &+0)(X, Y, Z). (13) 

By (12), the connection D’ clearly preserves g. In order to check that D’ also preserves 
the Zi ‘s, we recall the following general identity: 

*o!=za,Anf (14) 

for any 1 -form (Y and any g-orthogonal almost-complex structure I, with Kahler form SJZ. 
Applying the above identity to the Lee form 8, we get (same convention as for (10)) 

04 = D$ + ;H A X + iZi6’ A ZiX + iO(ZiX)Zi (15) 

for each Zi, i = 1,2, 3. It readily follows that D’ preserves each Zi . 
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The torsion TD’ of D’ is completely skew-symmetric, identified with the 3-form - * 0, 
as follows: 

B&: Z) = -(*Q)(X, Y, Z). (16) 

2.3. Tri-holomorphic Killing vectorjields 

We consider the case that M admits a non-trivial tri-holomorphic Killing vectorjeld 
X, i.e. a non-trivial vector field X preserving the metric g and the almost-complex 
structures I; ‘s: 

Lx = 0, cxzj = 0, (17) 

for i = 1, 2, 3, where CX denotes the Lie derivative in the direction of X. 
We denote by 6 the dual 1 -form of X and by & the dual 1 -form of the vector field Zi X 

with respect to g, i = 1, 2, 3. The function g(X, X) will be denoted by F. 
Recall that X being a Killing vector field is equivalent to 0°C being skew-symmetric, 

or, equivalently 

DR< = 4 d{. (18) 

The expressions of dc = 2 Dg$ and of d<i, i = 1,2, 3, are given by the following proposi- 
tion where, for any vector field Y, i y de stands for the inner product d$( Y, .) of the 2-form 
d< by Y. Notice that, at any point where X is non-zero, any 2-form 6 is entirely determined 
by the l-forms ix@ and il,x@, i = 1,2,3. We then have: 

Proposition 3. 
(a) The 2-form dc satisjies 

ix d< = - dF, 

iZ,x d6 = -ZI dF + a2U2X) (3 - a3U3-U C2, 

ilzx dC = -12 dF + a3UsXXl - w (11 X),$3, 
(19) 

i13x d< = --13 dF + a~ U10C2 - ~2U2xX1. 

where the l-forms (Al; are dejined by (4). 
In particulal; X is parallel if and only if its norm is constant and ai (Zi X) vanishes 
identically for i = 1,2, 3. 

(b) The 2-farms d<i, i = 1,2,3, satisfy 

dci = 0; A <i - Bi (X) .Ri cw 

Proof: Since X is Killing, we have 0 = CX~ = d(ixt) +ix dc = -dF +ix de. This gives 
the first equation in (19). In order to prove the three remaining equations, we start from the 
obvious identity (Oil;)(X) = D$ (Zi X) - Zi (0$X) for i = 1,2, 3. Since X preserves Z;, 
we have [X, ZiX] = 0, and the above identity becomes (Oili) = Di,X - Zi(D$X). 

Finally, because of (18), we get (D$Zi)(X) = iil,x dt - iZi(ix do. We then conclude by 
using (4). 
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The last assertion of (a) follows immediately. 

291 

Since X is Killing and preserves Z;, it also preserves the Ktiler form Qi. We thus have 
0 = CxG’i = d(ixQi) + ix(dQi) = dti + ix(Bi A L’i) = dci + 8(X)Qi - 6, A ci, 
i = 1,2,3. This proves (20). 0 

2.4. The induced three-dimensional geometry 

From now on, we assume that the vector field X is nowhere vanishing. 
Then, M is locally fibred over some Riemannian 3-manifold C, defined as the manifold 

of trajectories of X in some open set of M. Restricting our attention to this open set, we 
shall assume that M itself is fibred over C. 

Vector fields on Z are identified with vector fields Y on M orthogonal to X at any point 
and satisfying CX Y = 0. In particular, the inner product of two such vector fields is constant 
along each trajectory of X and determines a well-defined Riemannian metric on C [1 11. 
Differential forms on C are identified with differential forms 4 on M satisfying ix4 = 0 
and Lx4 = 0 or, equivalently, ix@ = 0 and ix d$ = 0. 

In particular, the vector fields Zi X, the 1 -forms ci and their exterior differential dci may 
be (and will be) considered as defined on _E, for i = 1,2,3. 

For further convenience, we introduce the positive function V defined by 

Then the metric g can be written as follows: 

(21) 

The function V being constant along the trajectories of X may and will be considered as 
defined on C. 

The same is true for the 2-form d( VC;) (but not for de if V is not constant). Indeed, since 
X is Killing, we have 0 = CX~ = ix dc + d(ixt) = VW1 ix d(V c). 

We infer the existence of a (local) real function t on M, defined up to a function on C, 
such that 

Vc = dt + w, (23) 

where w is a l-form on C, defined up to the differential of some function on Z:, satisfying 
dw = d(V 6). In particular, M is thus locally identified with the product iw x E in such a 
way that the Killing vector field X is identified with the vector field a/at. 

Instead of the metric induced by g on Z, we shall consider the conformal metric go, 
defined by 

gC = C Ci 8 <i, 

i=l 

(24) 
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with respect to which the triple (<i)i=t,2,3 is a (direct) orthonormal (global) frame of the 
cotangent bundle T*C. Then the dual orthonotmal frame of the tangent bundle TC is the 
triple {ei = V ZiX}t=1,2,3. Define a real l-form 6 on C by 

Cr= 
i: ai(e (25) 

i=l 

Then the system on M formed by the three last equations in (19) is equivalent to the following 
unique equation on C: 

dV+V(2=-**c do, (26) 

where *C denotes the Hodge-star operator on x with respect to gz and the induced 
orientation. 

In the same way, it follows from (20) that, for i = 1, 2, 3, the function @(X) and the 
1 -form @ defined by Qi’ = 8i - V Bi (X) < are actually defined on E and that the system 
(20) on M is equivalent to the following system on C: 

(27) 

for i = 1,2,3. 
If the almost-hyper-Hermitian structure (II, 12, 13) is actually hypercomplex, the l-form 

& coincides with @-, where 0 is the common Lee form 8 of It, 12, 13 (cf. Propostion 2) and 
the system (26) and (27) on C reduces to 

dV+Va=-*c dw, (28) 

dci = a! A ci - K *C <i 

for i = 1,2,3,‘where u! stands for @ = 8 - V@(X)6 and K and VO(X). 
The “converse” is true in the following sense: 

(29) 

Proposition 4. Let (,E, gc) be a three-dimensional, oriented Riemannian manifold. Let 
(tt]t=1,2,3 be a direct, orthonormal coframe of (E, go) satisfying (29) for some real 
l-form CI and some real function K. Denote by (ei)i=1,2,3 the dual orthonormal frame 
of TC. 

Let V be a positive realfunction and w a real I form satisfying (28) for the same I -form o. 
Denote by M the product [w x C and by t the canonical parameter of the factor [w. Consider 
the vector$eld X and the real l-form 6 on M defined by X = alat and e = V-’ (dt + w). 

Let g be the bilinear form on M defined by g * V(e @ 6 + gx). 
Let (It )t=1,2,3 be the triple of almost-complex structures on M determined by IlX = 

V-‘el, Zle2 = e3; I2X = V-‘e2, I2e3 = el; 13X = V-‘e3, I3e) = e2. 
Then 

(a) g is positive-dejkite on M = [w x C and X and 6 are dual of each other with respect 
to g. 
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(b) It, 12, I3 are integrable and, together with g, form a hyper-Hermitian structure on M, 
whose Lee form is equal to 

Q=cx+K<=u++(dt+W). (30) 

(c) The vectorjeld X is a tri-holomorphic Killing vectorjeld with respect to (g , II , 12, I3 ). 

Pro06 (a) We get a nowhere vanishing vector field T g-orthogonal to C by putting T = 
a/at -‘WV/( 1~1~ + V2), where C$ denotes the dual vector field of w with respect to gc on C. 
An easy computation shows that g(T, T) = V/((w12 + V2), which is everywhere positive. 
This proves that g is everywhere positive-definite. The remaining assertion is obvious. 
(b) The almost-complex structures Ii are clearly g-orthogonal and satisfy (1). The Klhler 
form at is equal to Qt = V(< A <I + 4‘2 A (3). By computing dS21, via (28) and (29) and 
using (3) we easily infer that the corresponding Lee form 81 is equal to a! + K <. The same 
is true for I2 and 13. It follows that II, I2 and I3 have the same Lee form with respect to g, 
whence are integrable by Propostion (c). Since the expressions of g and Ii, i = 1, 2, 3, do 
not explicitly involve t, all are preserved by X = a/at. 0 

The problem of determining the hyper-Hermitian metric (22) has now fallen into two 
parts: first, one must determine the three-dimensional geometry on C which satisfies (29); 
then, one must solve the monopole-like equation (28) for the pair (V, w). 

One knows from general theory [ 1 l] that the space of orbits C of an isometry (even 
merely a conformal isometry) in a Riemannian 4-manifold M with W+ = 0 will admit an 
Einstein-Weyl structure, with metric defined as in (24). Thus one anticipates that (29) will 
define an Einstein-Weyl geometry, while (28) is a covariant equation in this geometry. The 
conformal freedom 

for any positive function f on Z, is easily seen to be an invariance of (28) and (29). 

3. Einstein-Weyl geometry 

In this section, we first investigate the system (29) for a coframe (ti)i=t,2,3 which is 
orthogonal with respect to the Riemannian metric gc. As before, we denote by (ei]i=t,2.3 
the dual gc-orthonormal frame of T C. 

Since (&) is orthonormal, it is easy to check that the system (29) is equivalent to the 
following system: 

(32) 
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where Dg4- denotes the Levi-Civita connection of gz (here Dgxtl, etc. is viewed as a real 
bilinear form). 

Let V” denote the uniquely defined linear connection on the tangent bundle T C satisfying 

vuei = 0, i = 1,2,3. (33) 

By its very definition, the connection V” is flat and preserves the metric g (but has 
torsion). 

Then, the system (32) is equivalent to the fact that the connection V” determined by the 
(unknown) orthonormal frame (ei}i=t,2,3 is related to Dgz by 

V;Z = DFZ + gz(Y, Z) an -a(Z) Y - ;K (iz(*zYb))o (34) 

for any vector fields Y, Z on EC, where the duality isomorphisms fl and b are relative to the 
metric gs . 

The point is that the connection V” determined by the unknown orthonotmal frame 
(ei)i=l,2,3 is now well-defined by (34). Hence, a necessary and sufficient condition for the 
system (29) to admit a local solution (&)i=t.2,3 is that the connection V” defined by (34), 
which obviously preserves the metric gc, is flat. Indeed, V” is flat if and only if T C can be 
locally trivialized by a V”-parallel, gc-orthonormal frame (ei]i=t,2,3 and any such frame 
satisfies (32), hence (29). 

The problem can be re-formulated by introducing the Weyl-connection D defined by 

DyZ = DFZ - a(Y)Z - a(Z)Y + gc(Y, Z)an (35) 

for any vector fields Y, Z. 
Then (34) can also be written in the following way: 

Vo,Z = DyZ + a(Y)Z - ;/c (iz(=+Yb))“. (36) 

or, more briefly 

Vi = Dy +a(Y) ~TC - ;K *c yb, (37) 

where 1 rz denotes the identity of T C and *z Yb is here considered as a skew-symmetric 
endomorphism of T Z: via the metric gc. 

Then the curvature R” of V” is related to the curvature RD of the Weyl connection D by 

Rox,Y = G.Y - da(X, Y)lrc - $K2x A Y 

+ ;(dK + K(Y)(X) *c Y - ;(dK + KCX)(Y) *,y x 

= (iScalf - 4~~) X A Y + Ricf(X) A Y + X A Ric[(Y) 

+ ;(dK + Ka! - *da)(X) *c Y - ;(dK + KCY - *da)(Y) *z X, (38) 

where Scalfz denotes the scalar curvature of D with respect to gc and Ricf denotes the 

symmetric, trace-free part of the Ricci tensor of D (here, R” and R* are considered as 
endomorphisms of A2 (T C)). 
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It is easily checked that the first line in the second part of the RHS of (38) always satisfies 
the (first) Bianchi identity, while the last line satisfies the Bianchi identity if and only if it 
vanishes identically. 

We thus finally get the following proposition. 

Proposition 5. Let (C, gc) be a connected, three-dimensional Riemannian man@ld. Then 
the system (29) is locally solvable, for an orthonormal coframe {[i)i=l ,JJ if and only ifthe 
connection V” defined by (34) is jut. This happens ifand only cfthe curvature RD of the 
Weyl connection D defined by (35) satisjes the three following conditions: 
(S) Scalfz = ;K~, 

(E) Rict = 0, 
(K) d/c+Ka!--**Cda!=O. 

Moreover, any solution {ti }i= 1~3 is uniquely determined by its value at some point of M, 
which can be chosen arbitrarily, and can be extended to a global solution w,henever M is 
simply connected. 

It is easily observed that the whole problem is invariant under the gauge transformation 
(31). In particular, the latter preserves the Weyl connection D and the three conditions 

(S)-(E)-(K). 
Condition (E) means that D is an Einstein-Weyl connection. 
Condition (S) expresses the fact that the (conformal) scalar curvature ScalD of D is a 

square, i.e. ScalD admits a square root, a section of the real line bundle L-’ (cf. Remark 1) 
whose expression with respect to the metric gc is here denoted by K, up to a factor m. In 
particular, for any metric gc in the conformal class, the real function Scalfz is non-negative 
everywhere. 

Condition (K) is a conformally invariant additional condition for the square-root of Seal D, 
whose meaning is explained in Remark I. 

Since conditions (S)-(E)-(K) are “gauge invariant”, Proposition 5 can be re-formulated 
as follows: 

Proposition 6. Let (X, [gc]) be a connected, three-dimensional, conformal manzfold. Let 
D be a Weyl connection with respect to [gc] whose scalar curvature is a square. For any 
metric gz in the conformal class [gc], let (Y be the real l-form defined by (35) and K a real 
function satisfying (S). 

Then, for any metric gE in [gc], the system (29) is locally solvable for a gc-orthonormal 
coframe (<i)i=1,2,3 ifand only tf D satisfies the two conditions (E) and (K). 

If; moreover; C is compact, if D satisfies (E)-(K) and tf gc is the standard metric 
determined by D, so that (Y is the dual of a Killing vector$eld, then K is constant, as are the 
Riemannian scalar curvature ScalRz and the norm of (II. It then,follows that the Einstein- 
Weyl man@ld (Z, gc, D) is either Einstein (in the Riemannian sense) or; up to a$nite 
covering, isomorphic to S’ x S2, equipped with one of its two canonicalflat Weyl structures 
or a Berger sphere with its canonical Einstein-Weyl structure, according as K is zero or 
positive. 
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ProoJL: The first part is a re-formulation of Proposition 5. 
If C is compact, for a given Einstein-Weyl connection D, we can choose for gz in 

[gz] the standard metric of D, so that the l-form (11 is co-closed, i.e. *C da is closed. 
From (c), we then infer that K satisfies: ASK + g~(d~, a) = 0, hence is constant. By [9, I 
(3 l)-(32)], it then follows that the Riemannian scalar curvature ScalRZ and the square-norm 
]a! I2 of a! are constant as well. The last statement is a direct consequence of the classification 
in [18]. 0 

Remark 1. When no metric is chosen in the conformal class [go], the scalar curvature 
ScalD of D has to be considered as a section of the real line bundle Le2 of scalars of weight 
-2; then, K appears, by (S), as a section of L-l. For any integer k, we denote by Vck) the 
connection induced by D on Lk, by pck) its curvature, equal to the real 2-form k da. We 
denote by dVck’ the exterior differential with respect to Vck), so that (dvck’ o Vck)) = -k dol. 
Then, for any section K of L-' , (K) reads as follows: 

V(_UK = _ *c /+I) (39) 

a conformally invariant monopole equation, 
We recall the (conformal) Bianchi identity, which, for an Einstein-Weyl structure, reads 

as follows [9, Lemma 2; 161: 

5 *z v (-2)(ScalD) + dv’-“(*~:p(-‘)) = 0. (40) 

For any section K of L-‘, we consider the quantity Q = V(-~)K + *cp(-‘I, an L-‘-valued 
l-form on _X. By differentiating Q and using (40) and (S), we easily get the identity 

dvcm” Q + K @ *C Q = i *C V(-2)(ScalD) + dv’~*‘(*~p(-‘)) = 0. (41) 

Thus, we may think of the Bianchi identity as a linear equation for Q. The content of (39) 
is that Q is the solution zero of this equation and that therefore we cannot obtain more 
conditions by differentiating (39). 

To find an explicit example satisfying (K), one can check directly that the canonical 
Einstein-Weyl structure on the Berger sphere [l l] does so as is implicit in Proposition 6. 
Conversely, as shown in Proposition 6, a compact Einstein-Weyl manifold satisfying (K) is 
either locally conformally Einstein or is the Berger sphere. Without imposing compactness, 
one may perform a local calculation to find that Einstein-Weyl spaces subject to (K) are 
determined by two free functions of two variables, whereas the general three-dimensional 
Einstein-Weyl space is determined by four such functions [6] . 

There is a class of three-dimensional Einstein-Weyl spaces determined by a solution 
of the so-called SU(c0) Toda Jield equation [19] and depending on two free functions 
of two variables (such Einstein-Weyl structures appear in constructions by C. LeBrun of 
complex K%hler surfaces with vanishing scalar curvature and self-dual metrics on connected 
sums of complex projective planes [ 121). If we impose (K) on these solutions, we find that 
the only possibilities are locally conformally Einstein. Thus, the new class of solutions is 
complementary to these previously known ones. 
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We may investigate the monopole equation (28) for a three-dimensional Riemannian 
manifold (C, gc) admitting a Weyl-connection D satisfying the conditions (S)-(E)-(K) of 
Proposition 5, defined by (35). The l-form a appearing in (35), which depends upon the 
choice of the metric go in the conformal class [go], will be called the potential l-form of 

the Wql connection D with respect to the metric gz. Then (28) can be interpreted in the 
following way: 

Proposition 7. The positive function V is a local solution of (28) for some (local) I -form 
w on C if and only if the potential l-form L? of the Weyl connection D with respect to the 
conformal metric gc = V2 gc is g’c-coclosed. 

Proo$ The monopole equation (28) is locally solvable in w if and only if the 2-form 
*Z (d V + V (Y) is closed. The Hodge operator %c of the metric ix, operating on 1 -forms, 
is equal to V *gr, while & is related to (Y by Cr = cz -I- dV/V. We thus have %cczl = 
*c (Vu + d V). The conclusion follows immediately. Cl 

As a conclusion, via Propositions 4 and 6, we obtain four-dimensional hyper-Hermitian 
structures by observing the following prescriptions: 
(1) Consider a three-dimensional Einstein-Weyl space (Z, [SC], D) satisfying the addi- 

tional condition (K) of Proposition 5 for some section K of L-l related to the scalar 
curvature of D by (S). 

(2) For any metric gc in the conformal class, choose a positive function V (if any) so that 
the potential of D with respect to V2 gc is V2 gc-coclosed (i.e. the metric V2 gc is 
standard with respect to D [S]) and consider some (local) l-form w on Z such that (28) 
is satisfied. 

(3) Apply the recipe of Proposition 4 to obtain a hyper-Hermitian structure on the product 
M=lRxC. 

The examples given by Papadopoulos [ 141 are based on the Einstein-Weyl space which is 
locally conformal to the Einstein metric on S3. 

Remark 2. A case when the above mentioned prescription (2) can be trivially satisfied is 
the case that ScalD is strictly positive (with respect to any metric), so that K can be chosen 
positive (up to a change of the orientation of Z). We then obtain a solution of (28) by putting 
V = K, w = -a. By (30), the Lee form of the corresponding hyperhermitian structure 
is then equal to dt; in particular, the hyper-Hermitian structure is then locally conformally 

hyper-Ktiler. 
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